

¹Mayo Clinic Department of Laboratory Medicine and Pathology (Rochester, MN), ²Department of Research and Development, numares GROUP Corp. (Boston, MA), ⁵Service d'Explorations Fonctionnelles Rénaleset Métaboliques, Hôpital Edouard Herriot (Lyon, France)

BACKGROUND

Accurate assessment of glomerular filtration rate (GFR) is critical to decision making in individuals with liver disease. Renal impairment is common in association with liver disease and the degree of renal dysfunction impacts decisions on drug dosing, therapeutic interventions, and suitability for liver transplantation. Altered hemodynamics in liver disease often results in overestimation of GFR when using creatinine based GFR estimating equations. Recently, we have developed a novel GFR equation (GFR_{NMR}), which utilizes serum myo-inositol, valine and creatinine quantified by nuclear magnetic resonance spectroscopy (NMR) in combination with Cystatin-C, age and sex. This equation outperforms many GFR estimating equations in chronic kidney disease.

METHODS

We compared various GFR estimation equation including GFR_{NMR} in end-stage liver disease patien scheduled for orthotropic liver transplantation (OLT) a multicenter retrospective study. In, n=165, liv recipients, renal tracer clearance (mGFR iothalamate, iohexol or inulin) was measured preparation of OLT as part of normal clinical care assess kidney function. We measured Cystatin-C ai NMR kidney biomarkers, myo-inositol, valine a creatinine in a single simultaneous measuremer Analytes were used to estimate GFR based on CK EPI₂₀₀₉, CKD-EPI_{Cys}, or GFR_{NMR}.

A Multi-Parametric NMR based GFR Estimating Equation for Use in Patients with Liver Disease

Jeffrey Meeusen¹, Frank Stämmler², John Lieske³, Marcello Grassi², Maulik Shah⁴, Laurence Dubourg⁵, and Eric Schiffer²

ons	Ν	165			
	Age (yrs, range)	18 - 82			
nts	Age (yrs, mean ± SD)	58 ± 12			
	Sex (% male)	65.5			
in	BMI range	16 - 52			
	BMI mean ± SD	29 ± 7			
ver	BMI: < 20	9 (5.5%)			
by	BMI: 20-25	90 (54.5%)			
	BMI: > 30	66 (40%)			
in	mGFR range	3 - 146			
	mGFR mean ± SD	65 ± 29			
to	lothalamate	113 (68.5%)			
	Iohexol	5 (3%)			
na	Inulin	47 (28.5%)			
nd	CKD Stage 1	34 (20.6%)			
	CKD Stage 2	52 (31.5%)			
nt.	CKD Stage 3	60 (36.4%)			
	CKD Stage 4	18 (10.9%)			
KD-	CKD Stage 5	1 (0.6%)			

Characteristics of 165 patients with end-stage liver disease

30% (P15, P20, P30).

Equation	range	mean±SD	P15 [95% CI]	P20 [95% CI]	P30 [95% CI]	MAE [95% CI]	median Bias [95% CI]
CKD-EPI ₂₀₀₉	8 - 142	72 ± 30	44.24	50.91	65.45	15.28 [12.04 17.25]*	3
CKD-EPI _{Cys}	9 - 120	52 ± 27	27.88 [21.21 - 34.55] ***	40 [33.33 - 47.27]***	[58.2 - 72.75] 61.21 [53.95 - 68.48]**	[12.94 - 17.35] 16.78 [14.83 - 18.58]***	-13 [-1610]***
GFR _{NMR}	9 - 130	62 ± 26	53.33 [46.67 - 61.21]	64.85 [58.18 - 72.12]	80.61 [75.15 - 86.67]	[11.23 [9.57 - 12.71]	-2 [-5 - 1]

and P30 or Wilcoxon-signed rank test for MAE and median Bias;

CONCLUSIONS

CONTACT DETAILS

maulik.shah@numares.com www.numares.com

60 ml/min/1.73m².

Key Performance Indicators of GFR_{NMR} in comparison to CKD-EPI₂₀₀₉ and CKD-EPI_{Cvs} (MAE: Mean absolute error; CI: Confidence interval) Significance level adj. p-value, comparison with GFR_{NMR}: ns = not significant; * < 0.01; ***< 0.0001; significance of differences was calculated via McNemar test for P15, P20

Kidney function assessment is critical in patients wit Liver Diseases. GFR_{NMR} provides a more accurate assessment of GFR estimation over creatinine and Cystatin-C based equations in individuals with liver disease.

Follow numares: 👔 @numares AG

in @numares AG

@Agnumares
MR diagnostics

GFR_{NMR} showed lower median bias (A) and higher accuracy (B, shown by 1-P20) than CKD-EPI₂₀₀₉ and CKD-EPI_{Cvs} over the entire GFR range, especially in the clinically relevant range below

